
Computer Science AP

Sorting Algorithms

Introduction
This section is about sorting data! Sorting numbers, names, scores, etc. can be a useful task

in your programs. You can sort just about any data type. Many classes already have sorting
methods built into them that make this task very easy for you in your programs – for

example, the Collections class has a method call sort that you can use to quickly sort items
stored in Lists (like ArrayList).

We are going to take a look at learning how to code a few sorting algorithms. The algorithms
we will look at are called bubble sort, selection sort, insert sort. Later in the course we will

look at merge sort. We will learn the algorithms, analyze their run times on various size lists,
and get an appreciation for how the same problem (sorting!) can be solved in various ways.
Ultimately it is a good beginner programmers introduction to reading/writing code and getting

you thinking about algorithms.

We will stick to sorting arrays of numbers while learning and analyzing the algorithms since
arrays of integers are easy to work with. The algorithms can, however, be applied to almost

any object type that is sortable.

Videos
Many of the videos for this section of the course are made by other educators and hosted on

YouTube. I have selected videos that are well done and I saw no point 're-doing' them. If you
don't like the videos I've selected, feel free to search YouTube as this is a very popular topic
and there are thousands of videos explaining these algorithms.

Sorting Applets
An applet is a program that is written in Java that can be placed on a web page. Here are
links to a few applets that will demonstrate the various sorting algorithms. You'll be asked to

run the applets during the lessons.

***Some browsers will prevent applets from running depending on your security settings.
Rather than fiddle with security settings, it is often easier to try running the applet in a
different browser. If you want to use Chrome, you'll probably have to google how to permit

applets to run if they are not running for you!

X Sort Lab : http://math.hws.edu/TMCM/java/xSortLab/

SortingAlgorithms.com: http://www.sorting-algorithms.com/

UBC Sorting Algorithms: http://www.cs.ubc.ca/~harrison/Java/sorting-demo.html

Section 01 [Bubble Sort]

This sorting method is almost every students first sorting algorithm.

Watch

Java: BubbleSort by Joe James @ https://www.youtube.com/watch?v=F13_wsHDIG4

Run
BubbleSort in the X Sort Lab, or in one of the other applets. Keep running it until you

understand how the algorithm works.

Read the Code

public void bubbleSort(int[] nums){

 //run bubble sort with nums, reprint after every swap
 for (int i=0; i<nums.length; i++){ //line A

 for (int j=0; j<nums.length - i - 1; j++){ //line B
 if (nums[j] > nums[j+1]){ //line C
 int temp = nums[j]; //line D

 nums[j] = nums[j+1];
 nums[j+1] = temp; }

 }//end j loop
 }//end i loop
 }

Questions

consider the array {10, 8, 6, 4, 2}

1. Be able to describe in words how this sort works.
2. Which two numbers are the first to change positions in the array?

3. Which numbers reach their final position in the array early on in the sort?

4. Which lines of code represent the 'swapping' portion of the sort?

5. Using the bubble sort shown above, how many times would line A, B, C, and D be

executed?

6. If an array had 100 numbers that were backward, approximately how many swaps
would be required to sort the list?

7. If the array {10,1,2,3,4,5,6,} was used, how many swaps would be required to sort the

list?

8. What is the general mathematical relationship (Big O notation) between the time

required to sort the list and the number of items in the list?

Section 02 [Selection Sort]

This sorting method involves looking for the smallest value in the array, moving it to the
beginning of the list, and then repeating until the list is sorted.

Watch

Java: SelectionSort animated demo with code

by Joe James @ https://www.youtube.com/watch?v=cqh8nQwuKNE

Run
Selection Sort in the X Sort Lab, or in one of the other applets. Keep running it until you
understand how the algorithm works.

Read the Code

public void selectionSort(int[] nums){

 for (int i=0; i<nums.length-1; i++){
 int posOfLowest = i; //line A
 for (int j=i+1; j<nums.length; j++){

 if (nums[j] < nums[posOfLowest]) //line B
 posOfLowest = j;

 }
 int temp = nums[i]; //line C
 nums[i] = nums[posOfLowest];

 nums[posOfLowest] = temp;
 }

}

Questions

consider the array {10, 8, 6, 4, 2}

1. Be able to describe in words how this sort works.
2. Which two numbers are the first to change positions in the array?

3. Which numbers reach their final position in the array early on in the sort?

4. Which lines of code represent the 'swapping' portion of the sort?

5. Using the selection sort shown above, how many times would line A, B, C be executed?

6. If an array had 100 numbers that were backward, approximately how many swaps

would be required to sort the list?

7. If an array had 100 numbers with only two numbers out of order, how many swaps
would be required to sort the list?

8. Does the order of the values in the original array have a big impact on the running time

of the sort? Explain.

9. What is the general mathematical relationship (Big O notation) between the time

required to sort the list and the number of items in the list?

Section 03 [Insertion Sort]

This sorting method involves looking for the smallest value in the array, moving it to the
beginning of the list, and then repeating until the list is sorted.

Watch

Java: Insertion Sort sorting algorithm

by Joe James @ https://www.youtube.com/watch?v=lCDZ0IprFw4

Run
Selection Sort in the X Sort Lab, or in one of the other applets. Keep running it until you
understand how the algorithm works.

Read the Code

public void insertionSort(int[] nums){

 for (int i = 1; i < nums.length; i++){
 int j = i; //line A
 int B = nums[i];

 while ((j > 0) && (nums[j-1] > B)){
 nums[j] = nums[j-1]; //line B

 j--;
 }
 nums[j] = B; //line C

 }
}

Questions

consider the array {10, 8, 6, 4, 2}

1. Be able to describe in words how this sort works.
2. Which two numbers are the first to change positions in the array?

3. Which end of the array becomes 'sorted' as the sort progresses?

4. This sort does not 'swap' numbers, it 'slides' them. Which is the first number to 'slide'?

5. Which line in the code represents 'sliding' a number?

6. Using the insert sort shown above, how many times would line A, B, C be executed?

7. If an array had 100 numbers that were backward, approximately how many slides

would be required to sort the list?

8. If the array {10,1,2,3,4,5,6,} was used, how many slides would be required to sort the

list?

9. *Tricky question* Assume you have a completely randomly ordered list of 100

numbers. Predict the number of 'slides' required on average to sort the list.

10. What is the general mathematical relationship (Big O notation) between the time

required to sort the list and the number of items in the list?

Section 04 [Timing Lab]

Watch 'Timing Lab'.
Use Xsort and complete the following chart.

Use XSort Lab website!

 Time to Sort

n=20000 n=40000 n=60000 n=80000

sort

bubble

selection

insertion

 *merge

For bubble, selection, and insertion sort

1. Which was slowest?

2. Which was fastest?

3. When you double the size of the list, how does the running time change?

4. Do the results support the Big O Notation?

For merge sort

1. How did merge sort compare to the other sorts in terms of time?

2. When the size of the list was doubled, did merge sort behave the same as the other

