
  

Inheritance 
and 

Polymorphism



  

JFrame

GameFrame

JFrame extends a class too...  



  

Person

Student Teacher

Exchange
Student



  

Screen

ColorScreen

ColorScreenPlus



  

JFrame

BugFrame

Bug

BoxBug



  

Overrided methods in
the constructor of

SUPER CLASSES!



  

Polymorphism

Polymorphism is the ability of 
an object to take on many forms. 

The most common use of polymorphism in OOP occurs 
when a parent class reference is used to refer 

to a child class object. 

Any Java object that can pass more than one
IS-A test is considered to be polymorphic.



  

Person
--------------------------
int name
String address
int age
double weight
--------------------------
talk()
breath()
getAge()
setAge(int age)
stuff()

Student
--------------------------
int studentId
ArrayList<Mark> marks
--------------------------
study()
talk()
getAverageMark()

ExchangeStudent
--------------------------

--------------------------
talk()
getAverageMark()
getUnadjustedAverageMark()
getReturnDate()

Teacher
--------------------------

--------------------------
greet()
makeStudy(Student S)
determineGrade(Student S)



  

Shape
--------------------------
int x
int y
int sides
--------------------------
getX(), getY()
setX(int x), setY(int y)
getSides()
move(int xdist, int ydist)
getArea()
getPerimeter()
draw(Graphics g)

Circle
--------------------------
int radius
--------------------------
getArea()
getPerimeter()
draw(Graphics g)

ColoredCircle
--------------------------
Color myColor
--------------------------
draw(Graphics g)
drawWithoutColor(Graphics g)Parallelogram

--------------------------
double side1
double side2
double angle
--------------------------
getArea()
getPerimeter()
draw(Graphics g)
isRectangle()
isSquare()



  

Abstract Classes

can't instantiate an instance of an abstract class
(used as a class to build off of, complete, or add on to)

good way to share fields, methods, and behavior that is 
common to all subclasses, no copy and pasting code

makes it clear that subclasses will have different 
implementations of some of the methods (the abstract ones)



  

abstract Shape
--------------------------
int x
int y
int sides
--------------------------
getArea()
getPerimeter()
draw(Graphics g)

getX(), getY()
setX(int x), setY(int y)
getSides()
move(int xdist, int ydist)

Circle
--------------------------
int radius
--------------------------
getArea()
getPerimeter()
draw(Graphics g)

ColoredCircle
--------------------------
Color myColor
--------------------------
draw(Graphics g)
drawWithoutColor(Graphics g)Parallelogram

--------------------------
double side1
double side2
double angle
--------------------------
getArea()
getPerimeter()
draw(Graphics g)
isRectangle()
isSquare()



  

abstract Student
---------------------------------------------------------
String name
int age
Address address
int studentId
ArrayList<Mark> marks
---------------------------------------------------------
talk()
getAverageMark()
getMark(int x)

getAddress()      setAddress(Address A)
getName()          setName(String name)
getAge()             setAge(int age)

ExchangeStudent
--------------------------
--------------------------
talk()
getAverageMark()
getMark(int x)
getUnadjustedAverageMark()
getReturnDate()

RegularStudent
--------------------------
--------------------------
talk()
getAverageMark()
getMark(int x)



  

Interfaces

 

In the Java programming language, an interface is a reference 
type, similar to a class, that can contain only constants, method 
signatures, default methods, static methods, and nested types. 

Method bodies exist only for default methods and static 
methods. Interfaces cannot be instantiated—they can only be 

implemented by classes or extended by other interfaces. 

A class may implement multiple interfaces.



  

Differences between
Interface and Abstract Class

The key technical differences between an abstract class and an interface are:

Abstract classes can have constants, members, method stubs (methods without a body) 
and defined methods, whereas interfaces can only have constants and methods stubs.

Methods and members of an abstract class can be defined with any visibility, whereas all 
methods of an interface must be defined as public (they are defined public by default).

When inheriting an abstract class, a concrete child class must define the abstract 
methods, whereas an an abstract class can extend another abstract class and abstract 
methods from the parent class don't have to be defined.

Similarly, an interface extending another interface is not responsible for implementing 
methods from the parent interface. This is because interfaces cannot define any 
implementation.

A child class can only extend a single class (abstract or concrete), whereas an interface 
can extend or a class can implement multiple other interfaces.

A child class can define abstract methods with the same or less restrictive visibility, 
whereas a class implementing an interface must define the methods with the exact same 
visibility (public).



  

MainFrame 
implements

MonthDayPickable

receivedMonthDayEvent(String s)

MonthDayPicker

MonthDayPickable  owner
interface

MonthDayPickable

receivedMonthDayEvent(String s)

MonthDayPicker frame keeps track
of its owner (whatever other instance
created it).  When the user clicks OK
to select their date, the owner (that
implements MonthDayPickable) is
asked to run its receivedMonthDayEvent
method.  This is how the MainFrame knows
that a date has been selected and is how
the MainFrame receives the date String
from the MonthDayPicker.  

Clever? Yes.   Impossibe? No.



  

Interface:  Comparable

just implement the method 

public int compareTo(Object O)

return a number larger than zero if the calling 
instance is 'larger' than the argument, zero if they 

are equal, and less than zero if the calling 
instance is 'smaller'.  You decide which propert or 

properties to use in your comparison!



  

Benefits to Comparable?

Popular interface that programmers will 
know how to use

Allows instances or lists of instances of 
your class to be used in methods that have 
been designed to work with Comparable 
types, like the Collections class or any other 
code that uses Comparable types.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

